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Abstract

The complexity of human cancer underlies its devastating clinical conse-
quences. Drugs designed to target the genetic alterations that drive cancer
have improved the outcome for many patients, but not the majority of them.
Here, we review the genomic landscape of cancer, how genomic data can
provide much more than a sum of its parts, and the approaches developed to
identify and validate genomic alterations with potential therapeutic value.
We highlight notable successes and pitfalls in predicting the value of po-
tential therapeutic targets and discuss the use of multi-omic data to better
understand cancer dependencies and drug sensitivity. We discuss how inte-
grated approaches to collecting, curating, and sharing these large data sets
might improve the identification and prioritization of cancer vulnerabilities
as well as patient stratification within clinical trials. Finally, we outline how
future approaches might improve the efficiency and speed of translating ge-
nomic data into clinically effective therapies and how the use of unbiased
genome-wide information can identify novel predictive biomarkers that can
be either simple or complex.
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INTRODUCTION

Our understanding of the processes that distinguish malignant from normal tissue has improved
dramatically in recent years. This progress has been brought about through major advances in
cell, molecular, and cancer biology as well as drug development and preclinical cancer modeling.
However, this new understanding has outstripped our ability to translate knowledge into effective
treatments for cancer. Most new cancer medicines usually provide benefit for only a minority of
patients, highlighting our incomplete understanding of the complexity of malignant diseases.

Cancers arising from the same organ continue to be subclassified using simple histological tech-
niques. Such subclassification provides basic information to guide treatment and predict prognosis,
but it has limited impact on individual treatment decisions, especially when cancers resist therapy
(during or afterwards). These basic morphology features can be supplemented with immunohisto-
chemistry (IHC) and fluorescence in situ hybridization (FISH, a locus-specific structural genomic
analysis) assays that extend understanding of disease biology and allow a degree of molecular sub-
typing: for example, enabling the development of molecularly directed treatment approaches for
estrogen receptor (ER)—expressing breast cancers (1) and those with HER2 gene amplification (2).
These approaches have also been used to identify treatment-relevant biomarkers in other cancers
(3).
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The explosion of genomic investigation of human cancers, driven by technological advances
and large-scale, international sequencing efforts, has unmasked the remarkable complexity of can-
cer (4-8). Identification of a genetic alteration, even in a gene known to drive cancer in preclinical
models, does not necessarily mean that the malignant process remains, or ever was, dependent on
the alteration (9, 10). Further, cancers of the same histological type often display massive intra-
and intertumoral genomic variation (11-15). These complexities, and the sheer volume of data
that can now be acquired for each tumor, make it difficult to understand how best to disrupt the
biology of primary and relapsed cancers for therapeutic gain.

Next-generation sequencing has been adapted rapidly from a pure research tool to one used
increasingly in clinical research and patient management. For example, this has involved the intro-
duction of limited gene-panel and whole-exome sequencing, creating a wealth of individualized
knowledge about patients” tumors (16). These approaches have direct positive implications for
patient management—for example, facilitating the recruitment of patients to molecularly strati-
fied clinical trials (17). However, it is widely agreed that converting the tsunami of genomic data
that is now being acquired from patients with cancer into effective genomically guided therapy
is an enormous task that will require extensive, multidisciplinary collaborations. It is clear that
knowledge of a single, putatively targetable genomic alteration in a patient’s tumor is usually not
translatable into durable clinical responses (18). Insights into the heterogeneity of cancer pro-
vided by genomic analyses suggest that effective targeting of genetic alterations will require at
least an understanding of whether a particular alteration is present in all, or only a few, tumor
cells, whether the alteration has functional consequences for the cancer cell, and whether these
functional consequences are relevant to cancer progression and/or maintenance. Here, we provide
a genome-focused view to dealing with these issues: discussing current sequencing methodologies
and how we can best interpret their findings to guide therapy. Currently, approved genomically
guided cancer therapies can all be defined using targeted genetic approaches, and we explore the
extra information that broad, unbiased genomics can provide and how this can help define novel
simple (based on single genomic alterations) and more complex, actionable biomarkers. (See the
sidebar titled Important Definitions for definitions of some complex concepts.)

IMPORTANT DEFINITIONS

Basket trial: A clinical trial that includes patients with distinct tumor types (histologies/primary disease sites) that
share a specific biomarker, usually a specific genomic alteration, and treats them with a specific therapeutic strategy.
Basket trials test the hypothesis that it is the specific biomarker that defines the therapeutic response, rather than
the specific tumor type.

Putatively actionable genomic alteration: A DNA alteration in a patient’s tumor that might predict clinical re-
sponse to a matched drug. The degree of confidence in the prediction of clinical response (actionability) is propor-
tional to the level of evidence that (#) the specific alteration is necessary for cancer maintenance/progression and
(») the matched drug directly acts to abrogate those pathway(s) that lead to cancer maintenance/progression in
cancer cells as a result of the specific alteration.

Synthetic lethality: Cell death that arises from a combination of two or more deficiencies (genomically driven or
drug induced) and the individual deficiencies alone do not result in cell death.

Umbrella trial: A clinical trial that includes patients with a specific tumor type and matches patients with specific
cancer biomarkers, usually genomic alterations, to distinct trial arms, each with a therapeutic strategy predicted to
target that biomarker.
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Figure 1

Approaches for studying genomic alterations in cancer. (#) Illustration of stepwise increases in information
obtained through application of genomic technologies, demonstrating the trade-offs between discrimination
of genomic alterations and cost. (§) Illustration of the advantages and limitations of genomic technologies.
(¢) Ilustration of the advantages and limitations of tumor-derived substrates for genomic analyses.
Abbreviations: cfDNA, cell-free DNA; CNAs, copy number alterations; CTCs, circulating tumor cells;
FFPE, formalin-fixed and paraffin-embedded; FISH, fluorescence in situ hybridization; IHC, immunohisto-
chemistry; indels, insertions and deletions; WES, whole-exome sequencing; WGS, whole-genome
sequencing.

IDENTIFICATION OF CANCER-RELEVANT GENOMIC ALTERATIONS

Many techniques exist to identify alterations in the cancer genome, epigenome, transcriptome,
and proteome (Figure 1). Each reveals distinct features of the cancer. As only limited amounts
of tumor material are available from many patients, especially those with advanced cancer, care
needs to be taken when prioritizing which genome-wide studies should be performed to identify
clinically actionable biomarkers. Multiparametric techniques that can elucidate many features of
the cancer at once on single slides [e.g., imaging mass cytometry (19)] may preserve material for
deeper analyses, although these have not yet been clinically validated.

Technologies for identifying clinically relevant cancer alterations are shown in Figure 1a4,b
with associated advantages and limitations. Genome-wide approaches include whole-genome
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sequencing (WGS), which provides the most complete information at the genomic level, cov-
ering exonic, intronic, and intergenic regions, including promoters and enhancers, as well as
chromosomal rearrangements. Whole-exome sequencing (WES) is sufficient to find alterations
that result in predicted alterations in proteins but does not cover intronic/intergenic DNA, and
both WGS and WES usually have low coverage. Shallow WGS can provide information on copy
number alterations (CNAs).

Gene panels provide information on a more focused set of known cancer-associated genes
(typically up to 500). The relative affordability, high analytic validity, and ease of use with low
sample inputs of these approaches have led to their frequent use for clinical trial stratification
(20). Gene panels can also be used to detect CNAs and gene fusions for which breakpoints are
known. Reverse transcriptase-polymerase chain reaction (RT-PCR)/microarray panels also pro-
vide important focused information, such as the Mammaprint® and Oncotype DX® panels that
can subclassify risk in early breast cancer cases (21, 22). Hot spot panels are widely used to iden-
tify, with high sensitivity, patients with specific locus alterations who may benefit from currently
approved drugs (e.g., activating BRAF 17600 mutations and BRAF inhibitors) or to provide infor-
mation on intrinsic resistance to approved drugs [e.g., activating KR4S mutations and epidermal
growth factor receptor (EGFR) inhibitors], but these panels are limited in the extent of target
gene coverage (23). The choice of analytical approaches for an individual patient should be in
favor of those most likely to show alterations of clinical relevance, which currently means some
degree of genomic interrogation. The Foundation Medicine company has developed an indus-
trial platform for targeted sequencing and identified that >75% of patients harbor mutations in
at least 1 of 10 driver genes in their cancers; their platform has been widely used by clinicians for
determining putatively actionable alterations, both from tumor specimen—derived DNA and from
cell-free DNA (cfDNA)/circulating tumor DNA (ctDNA) (https://www.foundationmedicine.
com/). Approaches in academic centers have usually focused on in-house gene panels, such as the
Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-
IMPACT) panel, and both this and the FoundationOne CDx assay have been approved by the US
Food and Drug Administration (FDA) as diagnostic tests.

The study of genomic alterations in cancer is also dependent on the nature of the clinical
material. In this regard, technological advances have improved our ability to recover nucleic acids
from formalin-fixed and paraffin-embedded (FFPE) tumor tissue—the most common substrate
available for analysis in routine pathology laboratories—but it must be noted that degradation
of macromolecules in long-term stored FFPE samples hampers analysis, and fresh samples are
always preferred when feasible (Figure 1c¢).

Genomic analysis is not confined solely to tumor biopsies. cfDNA/ctDNA or circulating tu-
mor cells (CTCs) acquired from the blood—so-called liquid biopsies—also allow indirect genomic
analysis of tumors, typically by digital PCR or tagged-amplicon deep sequencing (24, 25). These
approaches have the advantages of being relatively noninvasive and enabling real-time, recurrent
sampling of the patient’s cancer genome. In this regard, ctDNA concentrations correlate with
tumor burden (26) and can be used to monitor tumor relapse and treatment resistance (27). Dig-
ital PCR techniques can even detect ctDNA from localized cancers, supporting investigation of
its utility in cancer screening (28). Techniques such as hybridization capture sequencing, which
utilizes unique molecular tags that can discriminate low mutant allelic frequencies, improve the
sensitivity of detection (27). ctDNA also holds promise to identify subclones of tumor cells likely
to become dominant and may reconfirm the status of important predictive biomarkers after each
treatment line, potentially avoiding the need for rebiopsy for treatment decisions. The sensitivity
of genomic analysis of CTCs is limited by the reliability of their isolation from blood, but CT'Cs
have the advantages of containing intact tumor genomes [unlike cfDNA, in which DNA fragments
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are 167 bp on average (29)] and allowing transcriptomic, proteomic, and functional analyses to be
performed (30). However, it is unclear how CTCs differ from anchored cancer cells within the tu-
mor microenvironment, and caution must be taken when interpreting data from these approaches.

Other approaches are required to provide information about gene expression. RNA sequencing
(RNAseq) or transcriptomics can be unbiased, exploring the full transcriptome, or can be directed
toward RNAs of interest. Whole-genome RNAseq data often require challenging deconvolution,
particularly when the sample contains significant stromal infiltration, and benchmarking initiatives
have helped create pipelines for data analysis (31). Single-cell RNAseq also allows deep profiling
of the tumor microenvironment as well as intratumoral heterogeneity (32). Regardless of the ap-
proach, RNAseq can provide comprehensive information on gene expression from both mutant
and wild-type alleles as well as splice variants and fusion transcripts. With regard to the latter,
RNAseq is a more rapid and reliable means of detecting gene fusions than DNA sequencing and
can be performed, albeit on selected gene targets, on FFPE material using NanoString technol-
ogy (33, 34). In addition to mRNA profiling, RNAseq also provides information on expressed
noncoding RNAs and microRNAs.

Alongside nucleic acid-based approaches, epigenomic profiling can provide a global view of
likely gene expression patterns, and proteomics (by mass spectrometry) allows interrogation of
cancer-specific posttranslational modifications and can elucidate the activation status of proteins
in pathways (35, 36). Epigenomic modifications are stable, allowing interrogation of DNA methy-
lation status using cfDNA, but may change significantly after treatment (as is the case for tran-
scriptional profiles), and caution should be taken when interpreting results from archival samples.
These approaches have not yet achieved widespread clinical utility (see the section titled Other
Paths to Novel Therapies).

WHAT MAKES AN IDEAL PREDICTIVE GENOMIC BIOMARKER?

Biomarkers, including those provided by genomic analyses, can be viewed generally as prognostic
or predictive. Prognostic genomic biomarkers are those associated with a particular level of dis-
ease aggression, usually judged in the context of current conventional therapy. Predictive genomic
biomarkers are those that identify tumors likely to respond to, or resist, a particular therapeutic
agent or strategy. Predictive biomarkers can be positive [e.g., activating EGFR mutations, predict-
ing responsiveness to EGFR-directed tyrosine kinase inhibitors (TKIs) in lung adenocarcinoma
(37)] or negative [e.g., activating KRAS mutations, predicting resistance to EGFR-directed mono-
clonal antibodies in colorectal cancer (CRC) (38, 39)].

The ideal positive predictive biomarker is one that can be targeted directly and induces a sus-
tained, clinical response in all patients whose tumors harbor the biomarker. This generally means
that the genomic alteration should be a sine qua non clonal driver of the disease [either by gain-of-
function (GOF) or by loss-of-function (LOF) consequences to proteins] and that coexisting cell
signaling pathways and intratumoral heterogeneity are unable to provide pathways to treatment
resistance. Although predictive genomic biomarkers are limited to the tumor cells themselves, the
biomarker may still drive cancer owing to functional modulation of other cells (e.g., immune cells
or other constituents of the tumor stroma). Biomarkers, although ideally single and independent
of other variables for ease of clinical utility, may also be compound/complex and could in princi-
ple integrate information from multiple modalities of interrogation (e.g., genomic, transcriptomic,
proteomic, metabolomic, and network approaches as well as tumor microenvironment, immune
signatures, and even microbiomics). To increase the proportion of patients responding to genom-
ically targeted treatments, to reduce the proportion of patients who do not respond yet are still
exposed to treatment toxicities and burdens, and to develop treatments for the majority of patients
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Hierarchy of evidence for determining putative clinical actionability. This illustration highlights key sources of evidence for the
determination of putative clinical actionability. The lower levels of the pyramid depict lower levels of evidence. As one moves up the
pyramid, higher levels of evidence are depicted and the probability that a specific drug will be clinically efficacious in targeting a specific
genomic alteration is increased.

who do not have genomically targeted treatments available, we must embrace both the complexity
and the uniqueness of individual cancers, which will mean novel approaches to determine puta-
tive clinical actionability of specific genomic alterations as well as increased reliance on complex,
compound biomarkers.

HOW TO IDENTIFY AND VALIDATE CLINICALLY RELEVANT
CANCER GENOMIC ALTERATIONS

When faced with a curated output of genetic data sets, the physician must be able to appropriately
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interpret this information to help decide if any genomic alteration should change the clinical
management of their patient. Sequencing approaches have identified many classes of genomic
alterations predicted to change protein function in cancer, each of which may, or may not, be
biologically and clinically relevant. Silent alterations are referred to as passenger changes, whereas
driver changes are those that are relevant to cancer cells and might be therapeutically actionable.
Evidence that can inform the clinician about therapeutic actionability is shown in Figure 2 and
must be contextualized with information about confidence in alteration calling, clonality, and co-
occurring genomic alterations.

Inferences from Sequence Data

A large number of cancer-relevant genomic alterations occur only rarely in cancer. These sig-
nals can therefore be indistinguishable from passenger mutations. The background mutation rate
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and the mutation frequency (relative to background) are important variables for determining the
power required to detect such rare but relevant genomic alterations (40). Often, many thousands
of patient samples are required, posing a particular problem for rare cancers. Most genomic al-
terations found in cancer have no experimental data to support or refute their potential clinical
actionability, which must therefore be inferred (with varying degrees of confidence) from a broad
array of sources, despite the majority still likely representing passenger alterations.

The pipeline for identifying putatively actionable alterations necessarily involves filtering steps,
including distinguishing sequencing errors from true alterations and somatic alterations from
germline variants. As low-frequency variants are difficult to distinguish from background mu-
tations, matched germline controls from the same patient make this process more reliable. There
are many software tools available to assist variant calling [e.g., VarScan 2 (41)] and CNA calling
[e.g., EXCAVATOR (42)].

Cancer-associated genomic alteration databases, including COSMIC (43) and ClinVar (44), al-
low determination of whether a specific genomic alteration is unique or recurrent. Because early
stage and advanced cancers behave differently, and have distinct mutational spectra and clonality
(45), we must strive to apply the right data set to each question. That said, recurrence of a spe-
cific alteration in that cancer type, or across cancer types, at a prevalence unlikely to be by chance
alone implies a selection pressure for this alteration and increases the likelihood of relevance. Re-
current cancer-associated mutations (even if scattered across different regions of a single gene),
hot spot regions of mutations (e.g.,in a kinase domain), and differences in the ratio of synonymous
versus nonsynonymous mutations can also implicate that gene as relevant but give no specific in-
formation regarding the phenotypic consequences of each individual alteration. In cases for which
functional information regarding the protein is already known, LOF/GOF consequences can of-
ten be inferred—for example, when key enzymatic/DNA binding residues are disrupted, protein
truncation results in loss of enzymatic domains or important regulatory domains, or focused lo-
cus amplification or deletion is found. In cases for which the structure of the protein is known,
modeling can predict functional consequences as well as likely drug sensitivities through active
site fitting if that protein is the drug target (46). For drugs targeting mutant proteins, it is particu-
larly important to know if the binding site for the drug remains accessible to it in the mutant form.
Functional inferences can also be made from knowledge of similar mutations occurring at the same
conserved sites in paralogous sequences. One should also integrate the possible relevance of co-
existing alterations (and known mutually exclusive/co-occurring alterations from large data sets),
the predicted activation state of other proteins in the pathway(s), as well as biological plausibility
and any relevant experimental/clinical data. Taken together, these data should allow attribution of
likely significance (e.g., pathogenic/likely pathogenic/passenger/likely passenger/unclear), ideally
with some indication of confidence despite often subjective conclusions. Several online databases
have integrated preclinical and clinical data to suggest the potential significance of specific alter-
ations [e.g., OncoKB (47), My Cancer Genome (48), Cancer Genome Interpreter (49), and the
Personalized Cancer Therapy knowledge base (50)], but the methods by which they do so vary
(e.g., from preclinical or clinical data, or by predicted protein function), sometimes leading to con-
flicting conclusions. All evidence must be aggregated and interpreted by the clinician or (ideally)
a multidisciplinary Molecular Tumor Board (MTB) before clinical recommendations are made.

Analyses of large-scale data sets have helped widen the set of putative driver alterations. For
example, a computational analysis of 9,423 tumor exomes from many different cancer types iden-
tified >3,000 putative missense driver alterations, including ~300 likely cancer driver genes, and
experimental validations suggest 60-85% of these are true drivers (51). Fifty-seven percent of
tumors had putatively therapeutically actionable alterations, although it is unclear from such in-
terrogations if these are founder or progressor mutations, which has relevance with regard to the
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cancers’ maintained dependencies. Using a similar data set, an analysis of mutations, copy num-
ber, transcriptomics, gene fusions, and DNA methylation showed that 89% of tumors had at least
one (likely) driving alteration in one of ten canonical pathways and 30% had multiple potentially
targetable alterations, providing possible opportunities for sequential or combination therapeutic
approaches (52). Validating drug-specific actionability for all of these in clinical models will prove
time-consuming and challenging with current technologies, and ultra-high-throughput methods
are required.

Matching Specific Genomic Alterations with Specific Drugs

Well over 80% of gastrointestinal stromal tumor patients can be matched to approved therapies
on the basis of specific genomic alterations (53). However, ~80% of gliomas have putatively ac-
tionable genomic alterations, and no targeted therapies for these alterations have been approved,
despite high-quality clinical attempts (54). Therefore, great caution must be taken when interpret-
ing putative actionability. Actionability must be matched not just to a drug on the same pathway
(as often suggested by actionability conclusions from large-scale analyses), or even a drug known
to inhibit the protein of interest, but must be rationally and experimentally validated for a specific
drug in an alteration-specific manner.

In recent years, functional characterization and druggability data have emerged first from clin-
ical studies [see the basket approach for neratinib in Supplemental Text 1 (9)]. In cases for which
drugs are already approved for use in patients with specific alterations, actionability is usually un-
ambiguous (although, again, often only the minority of patients can expect a response). Until we
develop better methods of predicting actionability with a specific drug in a specific cancer context,
only high-level evidence on drug-specific actionability should be used for patient management de-
cisions, whereas lower-level evidence should be used mainly in the context of matching patients
to biomarker-directed clinical trials (Figure 2). Strong preclinical evidence can sometimes justify
off-label use of a specific drug in patients with no other treatment options, but patients must be
carefully counseled about the risks associated with such drugs and the low probability of benefit.

Preclinical Data

Genetically engineered mouse models have provided irrefutable evidence of the role of mutated
genes in cancer development and maintenance and are important models for assessing drug sen-
sitivity and resistance. However, modeling disease in living organisms is expensive, complex, and
time-consuming, limiting its use for screening thousands of genomic alterations for therapeu-
tic potential. Further, translation rates from murine models to approved therapies remain low
in part because of the often poor design of preclinical studies and important differences be-
tween the murine and human diseases (55). It is more practical to determine the differential
drug sensitivities of cultured cancer cells that harbor mutant or wild-type genomic alterations.
Although tumor-derived cells are more representative of the mutational context of the disease,
there are usually insufficient numbers available to adequately represent more than the common
alterations. Thus, isogenic cell lines in which mutations are genetically engineered are useful to
determine the effects of single genomic alterations, providing important preliminary information
about actionability. Various high-throughput techniques are making in vitro mutational screen-
ing more rapid and comprehensive. For example, retroviral transduction recently identified four
novel activating mutations in HER2 and determined the drug actionability of both single and com-
pound HER? mutations (56), and saturation mutagenesis enabled screening of 6,810 ERK2 muta-
tions for functional consequences and drug sensitivity (57). Such approaches can also incorporate
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transcriptomics and proteomics to determine the impact of genetic alterations or drug treatment
on signaling pathways. Discoveries made through these approaches can then be validated and stud-
ied further in vivo to determine differential drug sensitivities in a more tissue-relevant context.

Clinical Data

Ultimately, evidence of the clinical actionability of a genomic alteration must come from large,
late-phase trials that include many patients with the alteration of interest. A thorough literature
review is usually necessary to determine the denominator of patients with the specific alteration
that have been treated with each specific targeted drug as well as the numbers that have responded
and have not. Response durations and drug-related toxicities should also be taken into account.
Case reports and case series are often useful, but these are particularly prone to publication bias
in favor of positive outcomes and should be used mainly for hypothesis generation for prospec-
tive trials. One must also consider the relevance of other coreported genomic data, including
comutations and CNAs, that may affect treatment response/resistance. Clinical data from other
cancer types may be helpful, although great caution should be taken with inferring actionabil-
ity in one cancer type from data obtained in another. As an example of this, in a basket trial in
which patients with activating BRAF V600 mutations were treated with vemurafenib, response
rates were 48% in melanoma, 37% in non-small-cell lung cancer (NSCLC), and only 5% in
CRC (10). In CRC patients, activation of EGFR by feedback loops is responsible for primary
resistance, and combined approaches targeting both BRAF and EGFR in CRC appear promising
(58).

THE LANDSCAPE OF GENOMIC ALTERATIONS IN CANCER
AND ACTIONABLE TARGETS

Chromosomal Structural Variants and Gene Fusions

Chromosomal rearrangements play important roles in carcinogenesis, although the frequency of
these alterations varies greatly between and within cancer subtypes (59). Chromosomal rearrange-
ments are best detected in an unbiased manner by WGS, but specific alterations can be elucidated
using targeted genetic approaches. The implications of large-scale genomic rearrangements are
unclear and currently best appreciated in the context of changes in the function of specific genes,
which include changes in gene promoters/enhancers/suppressors (modulating gene transcription)
or formation of hybrid genes (with exonic regions derived from two distinct genes). Rearrange-
ments can be balanced (through translocation, insertion, and inversion rearrangements) or un-
balanced (through deletion events). Although >9,000 gene fusion events have been identified in
cancer (60), most are likely to be nonpathogenic. Further understanding of the roles of nonex-
onic DNA sequences (and how these are altered in cancer cells) and of how genome structure and
function correlate in cancer cells is greatly needed to translate our genomics-based knowledge of
structural variants into novel therapeutic approaches.

Gene fusions can result in proteins with aberrant function (GOF or LOF). They can result in
deregulated transcription; for example, in follicular lymphoma the t(14;18)(q32;q21) translocation
places BCL2 under control of the immunoglobulin heavy locus (IGH) regulatory regions, leading
to BCL2 overexpression (61, 62). Fusions can also result in dysregulated enzymatic function such
as the BCR-ABLI balanced gene translocation in chronic myelogenous leukemia (CML) (63). This
fusion gene is the target for imatinib (a TKI with multiple targets), which was the first genomically
directed therapy for malignancy (64). Imatinib has transformed dramatically the life expectancy
of CML patients—most now die with CML, rather than because of it (65). Activating gene fusions
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are much rarer in solid cancers but are enriched in certain cancer types and in pediatric patients
(66), and some are strong oncogenic drivers and targets for particularly successful therapies with
impressive durations of response (67-69).

Gene fusions can be detected using WES/WGS as well as by gene panels and FISH when the
alteration is known; however, RNAseq is the gold standard approach for identifying gene fusions
(70). Even though more frequently recurring fusion events are more likely to be pathogenic and
drive cancer, a large number of rarer fusions are also likely to do so. Although each may be found
only in a small number of cancers, taken together, these rare fusions probably comprise the bulk
of putatively actionable gene fusions. To highlight therapeutic actionability of gene fusions and
the usually incremental nature of precision oncology, we focus on one highly successful example
of gene fusion targeting in solid cancers—using anaplastic lymphoma kinase (ALK) inhibitors to
treat ALK fusion-positive NSCLC (see Supplemental Text 2).

Given the successes of targeting more common gene fusions such as ALK in NSCLC, attention
is now being paid to less common fusion gene drivers. Rare, activating gene fusions involving the
neurotrophic tyrosine receptor kinase (N'TRK) family of receptor tyrosine kinases (RTKs), which
play important roles in neuronal development, have been reported in a variety of solid cancers (at
0.2-3% prevalence). Such fusions result in overexpression or constitutive activity of NTRK tyro-
sine kinases (TKs). Entrectinib potently inhibits the tropomyosin receptor kinase (TRK) products
of NTRKI1-3, as well as the ROS1 and ALK TKs (68). In a combined analysis of results from the
ALKA-372-001 and STARTRK-1 trials (z = 119 in total), 60 patients had NTRK/ROS1/ALK
genetic rearrangements, 25 of whom were naive to treatments targeting the rearrangement of in-
terest, had therapeutic exposures consistent with the eventual randomized phase II dose, and were
evaluable for response (71). The overall response rates (ORRs) for NTRK-rearranged cancers,
ROSI-rearranged cancers, and ALK-rearranged cancers were 100% (z = 4), 86% (n = 14), and
57% (n = 7), respectively, with promising signals of response durability. The intracranial ORR was
63% (n = 8), and one patient with extensive intracranial disease had a complete intracranial re-
sponse that lasted for at least 15 months. These results are being followed up in the STARTRK-2
basket study.

Larotrectinib is a potent, brain-penetrant pan-TRK inhibitor that was tested in a phase I/II
basket study in children and a phase II basket study in adults (69). Of the 55 patients treated, the
ORR was 75%, with a disease control rate of at least 88% and responses observed across diverse
tumor types and ages. Seventy-one percent of responses were ongoing at 1 year, when the median
progression-free survival (PFS) had not yet been reached, and these results led to breakthrough
therapy designation by the FDA. These results underline the importance of finding activating
gene fusions, given the profound clinical benefit that inhibiting these can provide.

Loss-of-Function Gene Alterations

These alterations inactivate or negatively affect the function of the protein product and encompass
a wide spectrum of genomic alterations, from missense mutations through indels to chromosomal
structural variants. For cases in which these alterations impact cancer progression or maintenance,
the relevant genes are commonly known as tumor suppressors. Unlike GOF alterations (see be-
low), LOF alterations do not present immediately attractive targets for therapeutics, but synthetic
lethality approaches can be applied to identify and exploit vulnerabilities exposed by the LOE.
Synthetic lethal interactions describe the relationship between two genes whereby inactivation
of either gene alone permits viability but combined inactivation results in cell death (72). Exploit-
ing this with therapeutics should result in limited toxicity to normal cells (as they do not already
harbor a deficiency). Poly(ADP-ribose) polymerase 1 and 2 (PARP1 and PARP2) are important
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sensors of DNA damage that bind to single-strand breaks and other types of DNA damage and
act in DNA damage response (DDR) signal transduction through posttranslational modification
of substrate proteins by poly(ADP-ribose) chains (72). BRCAI/2 mutant cancers are defective
in homologous recombination (HR), which is required for error-free double-strand DNA break
(DSB) repair (73), and thus rely on PARP activity for DNA repair (74, 75). Synthetic lethality from
PARP inhibition in BRCA1/2-deficient cancers is thought, in part, to be related to trapping of
PARP, which usually removes itself from single-stranded DNA (ssDNA) through autoPARylation
(76). Trapped PARP abrogates ssDNA break repair and provides the substrate for conversion
into DSBs. BRCA1/2-deficient cells lacking in HR are therefore unable to repair these lesions
efficiently, relying on error-prone repair mechanisms such as nonhomologous end joining (77).
BRCAL1/2-deficient cancers are sensitive to PARP inhibition (74, 75), for example, by olaparib,
rucaparib, and niraparib, which are all approved for the treatment of ovarian cancer. Although
responses have been higher in BRCA1/2 mutant cases, a significant population of BRCA1/2 wild-
type cases responds to these therapies (78). These other routes to achieving synthetic lethality
with PARP inhibitors are beginning to be understood—many BRCA1/2 wild-type cancers are
phenocopies of BRCA1/2 mutants with regard to HR defects and have similar vulnerabilities (79),
highlighting the importance of genomics-based diagnostic approaches. As resistance remains
inevitable with PARP inhibition, other approaches have identified other synthetic lethal targets,
such as Polymerase 6 (POL 0) (80, 81) and RAD52 (82), and the success of PARP inhibitors has
led to intensive study of other vulnerabilities across the spectrum of DNA damage repair.

Synthetic lethality can even occur between two components of the same complex, for example,
between BAF47 and BRG1 (both are parts of the SWI-SNF complex, which promotes mobi-
lization of nucleosomes along DNA, thereby regulating gene expression and facilitating DNA
repair). Members of the SWI-SNF complex are mutated in ~20% of cancers (83). BAF47 is com-
monly mutated in malignant rhabdoid tumors in young patients (84), and inhibition of EZH2
(the enzymatic portion of the polycomb repressor complex, which leads to CDKN2A epigenetic
silencing when BAF47 is deficient) leads to CDKN2A re-expression and is under clinical inves-
tigation for this disease (72, 85). Although previous approaches employing epigenomic targeting
have been disappointing, they have mainly targeted enzymes that switch global histone posttrans-
lational modifications, and it is likely that more focused synthetic lethality approaches will lead
to a new wave of epigenomically targeted therapies. Similar synthetic lethality approaches are be-
ing investigated in tumors with defects in metabolic pathways, such as succinate dehydrogenase
tumors, which are dependent on pyruvate carboxylase activity (86).

Gain-of-Function Gene Alterations

Cancer-relevant GOF alterations affect either the amount or the structure of the resultant pro-
teins, leading to acquisition of novel properties or deregulated activity. Point mutations are
the most common reasons for these changes, and many of these affect the RTK/RAS/RAF/
MEK/ERK and related PI3BK/AKT/mTOR signaling pathways (52). GOF alterations can also
occur through indels as well as gene amplifications (hypermorphs in the setting of a wild-type
allele) or structural variants. GOF mutations may be pathogenic heterozygous with a wild-type
allele, which can also affect the functional consequences of the mutation [as occurs with KRAS
(87, 88)]. Often, however, functional inactivation of the other allele occurs, usually through mu-
tation or deletion [loss of heterozygosity (LOH)]. GOF alterations are most simply targeted by
inhibition of the mutant protein or downstream effectors.

Activating BRAF missense mutations are common in melanoma [>40% of cases, most involv-
ing V600 (with 90% of these being V600OE)], and these can be targeted directly using the BRAF
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mutant inhibitors vemurafenib and dabrafenib [with monotherapy response rates for advanced
V600E cases being 48% and 50%, respectively (89, 90)]. Targeting MEK1/2 (just downstream of
BRAF) with trametinib (a MEK1/2 inhibitor) alone led to a lower ORR of 22% (91). As pathway/
MEK activation was identified as an important resistance mechanism to BRAF inhibitor
monotherapy, combination treatment with BRAF and MEK inhibitors was then explored. The
addition of trametinib to dabrafenib improved response rates from 51% to 64% and the 1-year
overall survival from 65% to 72% (p = 0.005) and also abrogated the paradoxical activation of
KRAS that occurs with BRAF-targeted monotherapy and leads to an increased risk of cutaneous
squamous cell carcinoma (1% in the combination arm versus 18% in the dabrafenib-only arm)
(92). Comparable results were achieved with the addition of cobimetinib (another MEK1/2 in-
hibitor) to vemurafenib (93).

Even within a single gene, multiple mechanisms may produce GOF consequences (e.g., activa-
tion mechanisms for rarer BRAF mutants that are not druggable using dabrafenib/vemurafenib).
Distinct mutations in codons 12/13/61 in KRAS all impair GTPase-activating protein (GAP)-
assisted guanosine diphosphate (GDP) hydrolysis but do so by different structural mechanisms,
and the relative prevalence of each of these mutations varies significantly among KRAS-driven
cancers, probably as a result of the mutational spectra produced by certain mutagens and selec-
tion for specific properties of the altered protein in specific cell types (94). Further, KRAS mutant
zygosity has important biological and therapeutic consequences (95). Many approaches have been
applied to directly target KRAS in KRAS mutant cancers, given the high prevalence of such muta-
tions in diverse tumor types (e.g., >98% of pancreatic adenocarcinomas and ~30% of lung ade-
nocarcinomas), yet no drugs have been approved specifically for KRAS mutant cancers, reflecting
both our incomplete understanding of the signaling pathways in which KRAS resides and the ab-
sence of a binding pocket on KRAS that is amenable to traditional drug screening (94) [although
many different approaches have been tested, including targeting KRAS G12C specifically with a
covalent inhibitor that can induce Krzs G12C tumor regression in murine models (96)]. Activat-
ing KRAS mutations are generally considered to confer signaling independence from upstream
RTKs of the ERBB family [which includes the epidermal growth factor receptor (EGFR), HER2,
ERBB3, and ERBB4] and others, leading to constitutive pro-proliferative and pro-survival signal-
ing. Consistent with this textbook model, KRAS mutant lung cancers and CRCs are insensitive
to EGFR inhibitors, and activating EGFR and KRAS mutations are mutually exclusive in cancers.
However, these KRAS mutant cancers are not clinically sensitive to MEK1/2 inhibition alone (97).
Further, KRAS mutant lung cancer cell lines remain dependent on IGFR activity for PI3K acti-
vation (98). In lung cancer and CRC cell lines, overexpression of ERBB3 (which heterodimerizes
with other ERBB family members to form active signaling units) is induced by MEK inhibition
downstream of activated KRAS, leading to the identification of ERBB and MEK inhibitors as syn-
thetic lethal in combination (99). Recently it was shown in a murine model that Kras G12D-driven
lung tumors remain dependent on signaling through the ERBB family (100). The pan-ERBB TKI
neratinib markedly suppressed Kras G12D-driven lung tumors, and although ineffective alone in
extending survival of mice with established tumors, neratinib provided added benefit to MEK1/2
inhibition with trametinib (100). Such results again highlight the caution that should be taken
when applying our current understanding of signaling pathways to clinical contexts—however ra-
tional a drug target might seem (e.g., MEK1/2 inhibition in KRAS mutant cancers), it should be
experimentally validated before actionability with a specific drug is tested clinically.

Impressive clinical benefit has been achieved by directly targeting mutant RTKs. Activating
EGFR mutations occur in up to 20% of lung adenocarcinomas, with significant geographical
variance—they are most common in Asian women who have never smoked tobacco (101). The
most recurrent mutations in EGFR promote constitutive EGFR activity and can be targeted with
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drugs that inhibit EGFR TK activity. The clinical development of this important target has mir-
rored the piecemeal approach for ALK inhibitors (described in Supplemental Text 2), and sev-
eral generations of drugs with specific properties that allow them to target different subsets of
mutations, or efficiently cross the blood-brain barrier (which can hinder reaching therapeutically
relevant concentrations of systemic drugs in the central nervous system), have been developed
(37, 102). A common resistance mutation found in patients that progress on first- and second-
generation EGFR TKIs (such as gefitinib, erlotinib, and afatinib) is the gatekeeper mutation
T790M (found in the ATP binding pocket of EGFR), which is responsible for drug resistance
in ~60% of cases and increases the affinity of EGFR for ATP (103). Emergence of the T790M
mutation can be detected by rebiopsy or by analysis of cfDNA (the latter method being widely
used for this application). Unlike first- and second-generation EGFR TKIs, osimertinib binds co-
valently to EGFR via C797, with an increased affinity for mutant over wild-type EGFR proteins
(including T790M) (104). In the FLAURA trial, in treatment-naive NSCLC patients with EGFR
exon 19 deletions or LS8R mutations, the response rate was 80% for osimertinib, similar to gefi-
tinib/erlotinib (standard-of-care arm), but with a median duration of response of 17.2 months
(versus 8.5 months with standard of care), leading to its approval in the first-line setting (105).
The impact of each EGFR-targeted TKI on less common EGFR mutations is less clear [although
case reports and series have provided some insights (106)], as are their utilities in other cancers
harboring activating EGFR mutations.

Zygosity and Copy Number Alterations

Changes in zygosity can lead to loss of wild-type protein production as well as increased produc-
tion of the mutant protein, with obvious implications for oncogenes and tumor suppressor genes.
Any LOH must therefore be examined to interpret the likely functional outcome. CNAs are focal
amplifications or deletions of a restricted region of a chromosome that may lead to changes in
gene expression and should ideally be reported alongside genomic alterations. The underlying
mechanisms of these alterations are not fully understood, but it is thought that they arise from a
combination of DNA strand breaks alongside impaired cell-cycle checkpoint functionality/ DNA
repair mechanisms or though replication of extrachromosomal DNA from an excised DNA frag-
ment (present in ~50% of cancers) (107). Absolute copy numbers of mutant and wild-type alleles
appear to be the most important variables, given their effects on mutant/wild-type protein pro-
duction. CNAs, although best determined by WGS/WES, can also be determined using gene
panels and cfDNA analysis. Large-scale integrated analyses of genomic and transcriptomic data,
such as the METABRIC study of ~2,000 breast cancers, highlighted CNAs as the most important
variables determining gene expression, particularly with cis-acting CNAs (with regard to mutant
alleles), and revealed new driver targets driven by CNAs (108, 109). This study also identified a
good prognosis group of cancers with very low levels of CNAs. CNAs can also be readily deter-
mined using shallow WGS, which can identify both regional CNAs and genome-wide signatures
that can be used to subclassify cancers, as has been shown for ovarian cancer (110). This is a pow-
erful, but inexpensive, tool that could easily be incorporated into routine genomic interrogation.

CNAs have generally been more challenging to target clinically than mutant proteins, owing to
the fact that wild-type proteins in nontumor cells must also be inhibited if the altered gene is also
the drug target. HER2 amplification leads to sensitivity to multiple HER2-targeted therapies in
breast cancer and gastroesophageal cancer (111). FGFR2 and MET are also frequently amplified in
solid cancers, and it appears that high-level clonal amplification dictates sensitivity to inhibitors
targeting amplified genes (112). Amplified genes whose protein products are presented on the
plasma membrane are attractive targets for antibody—drug conjugates. These deliver a cytotoxic
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payload preferentially to cells with the highest target protein levels (113), such as the strategy
adopted for ado-trastuzumab emtansine (which is approved for advanced HER2-overexpressing
breast cancer) (114). It is highly likely that we will see a significant increase in the number of
CNA-targeted therapies approved in the coming years.

Germline Variants

Although the importance of germline variants has been appreciated for decades in familial cancer
syndromes, itis increasingly appreciated that significant cancer-predisposing germline variants are
more common than previously thought [e.g., ~12% of prostate and ~16% of renal cancer patients
have germline genomic alterations in important cancer-associated genes (115, 116)]. It is unclear
if germline-associated and identical somatic variants can be targeted by similar approaches, but
clinical responses to PARP inhibitors in BRCA1/2 mutant cancers suggest that they can be (117),
although differences in clonality and toxicity may exist. Germline testing alongside somatic testing
in the same patient improves the detection of somatic mutations as well as provides important
information about risk for other family members.

Genetic Instability and Tumor Mutational Burden

Changes in chromosomal number or structure as a result of chromosomal instability (CIN) are
observed in most cancer types and are generally associated with a poor prognosis (118). CIN
is thought to be an early event and a driving force behind the acquisition of further mutations
and the development of intratumoral heterogeneity (119, 120). Chromosomally unstable tumors
include features such as large-scale amplifications and deletions, LOH, translocations, and inver-
sions. Large aberrant genomic amplifications and deletions can be caused by DNA replication
stress, via the slowing or collapsing of replication forks (121). Replication stress can be caused by
a number of factors including oncogene activation and endogenous factors (e.g., oxidative stress)
(122, 123). Mutations in DNA repair genes (e.g., BRCAI/2) are also important drivers of CIN.
Whole-chromosome aneuploidy is also a common feature of cancer, being generally attributed to
chromosome mis-segregation. Whether aneuploidy is a cause or consequence of CIN is a sub-
ject of debate, and it is thought that aneuploidy can be both tumor promoting and suppressing,
depending on the context, though overall it appears to contribute to increased tumor fitness and
promote genomic evolution (124-126).

Mismatch repair (MMR) fixes a type of DNA damage that occurs when DNA polymerase slips,
which would otherwise result in frameshift mutations. Microsatellite instability (MSI) can occur
secondary to germline or somatic mutations in, or hypermethylation of, MMR genes (e.g., MSH?2
or MLHT) (127). In CRC, MSI is known to lead to tumor development and is usually associated
with a better prognosis compared with microsatellite-stable tumors. A less common form of ge-
nomic instability is acquired through LOF alterations in genes involved in base excision repair
(BER) or nucleotide excision repair (NER) pathways, leading to important consequences for de-
fense against mutagens. Patients with xeroderma pigmentosum have germline mutations in NER
genes and a dramatic predisposition to the development of skin cancer due to an impaired ability to
repair ultraviolet light-induced DNA damage. Genetically unstable tumors can accumulate large
numbers of CNAs and small-scale mutations, although the frequency of CNAs generally appears
to be inversely proportional to mutation frequency, leading to the concepts of M (mutation) and
C (CNA) classes of cancer (7).

Independent of functional aberrations, genomic alterations in cancer that affect amino acid
sequences can provide information about possible neoantigen production and immunogenicity
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[whereby presentation of mutant peptides on MHC class I proteins can be detected by cytotoxic
T lymphocytes (CTLs), leading to tumor cell death]. Antigen presentation is restricted by human
leukocyte antigen (HLA) haplotypes and depends on the presence of CTLs with cognate T cell
receptors (T'CRs) and the balance of stimulatory and inhibitory signals from the tumor cell or
microenvironment. Tumor-infiltrating lymphocytes (TILs) are emerging as important biomark-
ers for the potential immunogenicity of cancers, for example, in triple-negative breast cancers
for which TIL infiltration is predictive of prognosis (128). Their presence presumably reflects
either ongoing effective antitumoral immunity or an immune response that lacks the final steps
to convert production and homing of tumor-specific TILs into tumor cell killing. Programmed
death-ligand 1 (PD-L1), which binds the T cell inhibitory checkpoint receptor PD-1 (negatively
regulating T cell activity), is an important positive predictive biomarker for response of cancers to
the anti-PD-1/PD-L1 immune checkpoint inhibitor ICPI) monoclonal antibodies (129). Agents
targeting a raft of other stimulatory and inhibitory immune cell checkpoints are currently in clin-
ical development, and an anti-CTLA4 antibody (ipilimumab) was the first to be approved. Anti-
CTLA4 and anti-PD-1/PD-L1 antibodies are more potent in combination in melanoma, with
manageable toxicity (130, 131). Because elucidation of all these immune variables is impractical
for individual patients, tumor mutational burden (TMB) has emerged as a surrogate biomarker
for the number of neoantigens and has been shown to be predictive of response to ICPIs (132).
TMB is higher in cancers exposed to potent carcinogens, such as tobacco-exposed lung cancers
and melanomas, and TMB-high tumors are more likely to respond to ICPIs. MMR deficiency also
produces high neoantigen burden, and pembrolizumab [an anti-PD-1 ICPI with efficacy against
MMR-deficient cancers (133)] has been granted accelerated approval by the FDA for these (or
other MSI-high) tumors regardless of their initial origin or histology.

Broad Genomic Classifications

Alongside identification of individual predictive biomarkers as described above, analyses of large-
scale sequencing data have used mutational clustering to allow more specific taxonomic classifi-
cations of cancers. For example, analysis of ~2,000 breast cancers in the METABRIC cohort has
revealed 10 integrative clusters, with distinct features and prognoses (134). Histopathological sub-
classifications are inferior to genomic taxonomic classification in survival prediction, and genomic
taxonomies cannot be reliably inferred using traditional clinicopathological methods alone (135).
Genomic taxonomies will allow the usually broad histopathological eligibility for clinical trials
to be narrowed to help search for response signals in certain subclasses and may explain some
of the differential responses observed in clinical trials with nongenomically matched agents. By
elimination of much of the noise from the presence of other subtypes, they will also allow further
identification of subclass-specific drivers. Unbiased genomic interrogation yields insights beyond
those that can be discerned from focused studies—it is only by looking at broad patterns of ge-
nomic alterations that we can reliably identify biological subtypes of cancers with distinct cells of
origin and initiator and progressor genomic alterations and hone our search for novel therapeutic
approaches.

Clonality and Heterogeneity

Genomics approaches have shown that solid cancers usually comprise multiple subclones,
promoted by genetic instability. The presence of subclones is likely to be responsible for much
of the intrinsic and acquired resistance observed with genomically targeted agents (136). After
truncal (often initiating) genomic alterations, branched evolution results in tumor cell subclones,
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potentially with differing fitness and sensitivities to specific therapies (136). Heterogeneity is
a dynamic property, changing as certain fitter subclones win out, either in cancers progressing
in the absence of treatment or as a result of subclonal death or skewed signaling networks in
response to sustained therapy. Diligent sequencing of many parts of the same tumor and different
metastatic sites has led to significant insights into intratumoral and intertumoral heterogeneity.
For example, sequencing of multiple sites of single renal cell carcinoma tumors demonstrated
that intratumoral heterogeneity is common and approximately two-thirds of mutations are not
detectable in all sequenced regions (12). Biopsies underestimate tumor clonality (being from a
limited region of a single disease site), but measuring allelic frequencies of mutations even in these
small samples remains important. Sampling of various metastatic sites, or analysis of cfDNA,
which is safer and more practical (137), allows a more global assessment of cancer clonality.

Deterministic evolutionary outcomes have also been shown in renal cell carcinoma, for which
seven evolutionary subtypes were identified in a study of 1,206 primary regions from 101 patients
(13), and genetic diversity and chromosomal complexity have emerged as important predictors
of outcome. The degrees of intratumoral and intertumoral heterogeneity vary significantly be-
tween tumor types, from high intrinsic levels of subclones in hepatocellular carcinomas to lower
levels seen in melanoma (11). Significant heterogeneity is also seen between primary tumors and
metastatic sites, unsurprising given their distinct microenvironments, now evidenced by multi-
ple studies in multiple cancer types. For example, in breast cancer, eight genes were shown to be
more frequently mutated in metastatic sites, and mTOR pathway gene mutations and APOBEC
mutational signatures were more frequently observed in metastatic HER2-negative, hormone
receptor—positive tumors than in primary tumors (8). Branched evolution and subclonality have
important implications for the application of genomically targeted agents in individual patients,
and we must move away from the concept of binary alterations (presence or absence of the al-
teration) to incorporate measures of clonality. For example, ~15% of PI3K/AKT pathway alter-
ations across cancers are subclonal (139), and although PTEN loss appears clonal in triple-negative
breast cancer (140), it is often subclonal in prostate cancer (141) (reviewed in 142). These impor-
tant observations are likely the cause of some of the significant intrinsic resistance associated with
genomically targeted therapies matched to known strong driver alterations.

IMPLICATIONS OF GENOMIC DATA FOR CLINICAL TRIALS

From January 1, 2006, to June 1, 2018, 34 targeted drugs or combinations of targeted drugs (ex-
cluding hormonal therapies alone) were approved by the FDA for first-line treatment of advanced
cancers (or after radiation therapy alone). Of these, 16 have been approved coupled with genomic
biomarkers (including HER2 positivity, which is routinely detected by in situ hybridization or
FISH but reflects a clearly defined genomic alteration); 17 have been approved coupled with
nongenomic biomarkers (7 = 4) or without a necessary biomarker (z = 13); and 1 has indications
for which this requirement varies (pembrolizumab). Indications for monotherapies and combina-
tions are shown in Tables 1 and 2, alongside any biomarkers required for their use. For those
drugs coupled with genomic biomarkers, response rates by cancer type and by targeted genomic
alteration are shown in Figure 34. Response rates are generally higher when coupled to a genomic
biomarker (Figure 35; p < 0.0001) than when coupled with a nongenomic or no biomarker. Of
the 33 individual targeted agents that have been approved, 20 are kinase inhibitors, with the most
common targets being EGFR, ALK, BRAF, MEK, and VEGFR; 5 are anti-PD-1/PD-L1 anti-
bodies; and the rest inhibit SMO, CDKs, or mTOR.

Although approved genomically targeted drugs have markedly changed the outcomes for sub-
sets of patients, the small number of targets for approved drugs has led some to question the
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indications, and response rates

Table 1 FDA-approved, genomically matched targeted therapies in the first-line setting with targets, coapprovals,

Major drug
Genomic biomarker Indication Drug or combination target(s) Response rate
Activating BRAF mutation Melanoma Binimetinib and encorafenib BRAF and MEK1/2 63%
Activating BRAF mutation Melanoma Cobimetinib and vemurafenib BRAF and MEK1/2 70%
Activating BRAF mutation Melanoma Dabrafenib BRAF 52%
Activating BRAF mutation Melanoma Dabrafenib and trametinib BRAF and MEK1/2 66%
Activating BRAF mutation Anaplastic thyroid Dabrafenib and trametinib BRAF and MEK1/2 61%
carcinoma
Activating BRAF mutation NSCLC Dabrafenib and trametinib BRAF and MEK1/2 63%
Activating BRAF mutation Melanoma Trametinib MEK1/2 22%
Activating BRAF mutation Melanoma Vemurafenib BRAF 48%
Activating EGFR mutation NSCLC Afatinib EGFR 66%
Activating EGFR mutation NSCLC Erlotinib EGFR 65%
Activating EGFR mutation NSCLC Gefitinib EGFR 70%
Activating EGFR mutation NSCLC Osimertinib EGFR 77%
ALK translocation NSCLC Alectinib ALK 83%
ALK translocation NSCLC Brigatinib ALK 48%
ALK translocation NSCLC Ceritinib ALK 73%
ALK translocation NSCLC Crizotinib ALK 65%
¢-KIT mutation GIST Imatinib Multiple TKs 53%
HER?2 amplification Breast cancer Lapatinib and letrozole EGFR/HER2 and 28%
hormonal therapy
MMR deficiency/MSI high Any tumor origin Pembrolizumab PD-1 40%
ROS] translocation NSCLC Crizotinib ROS1 70%

This table shows all the fully FDA-approved drugs or combinations (between January 1, 2006, and June 1, 2018) against advanced tumors that can be used

in the first-line setting (or after radiation alone) and are dependent on the detection of a specific genomic alteration in tumors, alongside response rates

used in the creation of Figure 3. For consistency, response rates given here were taken from the individual drug labels at https://www.fda.gov.
Abbreviations: FDA, US Food and Drug Administration; GIST, gastrointestinal stromal tumor; MMR, mismatch repair; MSI, microsatellite instability;

NSCLC, non-small-cell lung cancer; TK, tyrosine kinase.
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broad utility of genomically targeted cancer therapeutics. Arguments against following this path
have been strengthened by some disappointing outcomes from approaches to match patients to
drugs on the basis of putatively actionable genomic alterations. The SHIVA trial was a random-
ized phase II trial including patients with any genomically profiled metastatic tumor (refractory to
standard-of-care treatment) who received 1 of 10 matched regimens or the physician’s treatment of
choice (143). This was a negative study, presumably as a result of heavy reliance on treating patients
with PI3K/AKT/mTOR alterations with the weak mTOR inhibitor everolimus. The MOSCATO-
01 study used a PFS1/2 outcome measure (to determine if genomically matched treatment could
result in greater PFS than the last therapy) and demonstrated that 33% of patients had improved
outcomes with genomically matched treatment [using a >30% increase in PFS as a positive out-
come (occurred in 63/193 patients) (144)]. The MD Anderson IMPACT study of 3,743 patients
(including 1,307 patients with at least one genomic alteration) demonstrated an improvement in
3-year overall survival from 7% (with nonmatched treatments) to 15% with genomically matched
treatments (145). SAFIR 02, the ASCO TAPUR study, and NCI-MATCH (see later in this sec-
tion) are ongoing and will report further general outcomes for these approaches. Positive out-
comes are expected, as outcomes from large numbers of phase I and II trials have shown that
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Table 2 FDA-approved, nongenomically matched targeted therapies in the first-line setting with targets, coapprovals,

indications, and response rates

Biomarker Response
required Indication Drug or combination Major drug target(s) rate
None Merkel cell carcinoma Avelumab PD-L1 33%
None Renal cell carcinoma Cabozantinib MET/AXL/VEGFR 33%
None Medullary thyroid cancer Cabozantinib MET/AXL/VEGFR 28%
None Neuroendocrine tumor Everolimus mTOR 2%
None Pancreatic neuroendocrine Everolimus mTOR 5%
tumor
None Melanoma Ipilimumab CTLA4 11%
None Melanoma Ipilimumab and nivolumab CTLA4 and PD-1 60%
None Renal cell carcinoma Ipilimumab and nivolumab CTLA4 and PD-1 2%
None Thyroid cancer Lenvatinib VEGFR 65%
None Melanoma Nivolumab PD-1 40%
None Renal cell carcinoma Pazopanib VEGFR/c-KIT/FGFR/ 30%
PDGFR
None Melanoma Pembrolizumab PD-1 34%
None Basal cell carcinoma Sonidegib Smoothened 58%
None Thyroid cancer Sorafenib VEGFR/PDGFR/RAF 12%
None Hepatocellular carcinoma Sorafenib VEGFR/PDGFR/RAF 2%
None Pancreatic neuroendocrine Sunitinib VEGFR/PDGFR 9%
tumor
None Renal cell carcinoma Sunitinib VEGFR/PDGFR 28%
None Renal cell carcinoma Temsirolimus mTOR 9%
None Basal cell carcinoma Vismodegib Smoothened 30%
ER positivity Breast cancer Abemaciclib and aromatase CDK4/6 and hormonal 59%
inhibitor therapy
ER positivity Breast cancer Palbociclib and letrozole CDK4/6 and hormonal 55%
therapy
ER positivity Breast cancer Ribociclib and aromatase CDK4/6 and hormonal 53%
inhibitor therapy
PD-L1 positivity | Urothelial carcinoma Atezolizumab PD-L1 23%

This table shows all the fully FDA-approved drugs or combinations (between January 1, 2006, and June 1, 2018) against advanced tumors that can be used

in the first-line setting (or after radiation alone) and are not dependent on the detection of a specific genomic alteration in tumors, alongside response rates

used in the creation of Figure 3. For consistency, response rates given here were taken from the individual drug labels at https://www.fda.gov.

Abbreviations: ER, estrogen receptor; FDA, US Food and Drug Administration.

genomic biomarkers significantly outperform other biomarkers in terms of response rates with

matched therapies.

To determine the true actionability of specific genomic alterations, a sufficient number of pa-
tients with a particular alteration must be treated with a specific drug, giving the study sufficient
power to infer clinically meaningful efficacy. Previously, studies have often relied on screening
patients for single (often rare) alterations and matching them to a specific drug in a single trial,
leading to low rates of trial participation. Currently, only 2-5% of patients that are genomically

profiled are matched to therapies in clinical trials, as being matched depends on local trial avail-
ability and strict trial-specific eligibility criteria, although enrollment rates in clinical trials are
improving. To speed up the drug development process, and to widen the number of therapies
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Graphs showing response rates to FDA-approved targeted therapies for advanced tumors in the first-line
setting or after radiation therapy alone (from January 1, 2006, to June 1, 2018). (#) Individual response rates
are shown for FDA-approved genomic biomarker—directed drugs separated by cancer indication and by
genomic alteration target. The indications and drug(s) from which the response rates were generated for this
figure are highlighted in Table 1. (5) Response rates are shown for FDA-approved, genomically targeted
therapies based on a genomic biomarker and for those that are not based on a genomic biomarker or do not
require a biomarker. The indications and drug(s) from which the response rates were generated for this
figure are highlighted in Tables 1 and 2. A two-sided Mann-Whitney test was performed that shows
significantly higher response rates for genomically matched therapies (p < 0.0001). Abbreviations: FDA, US
Food and Drug Administration; NSCLC, non-small-cell lung cancer.

individual patients may be eligible to receive in clinical trial contexts, two main trial approaches
have been developed. Umbrella trials are disease specific, include patients with a single type of
cancer, and use genomic profiling to match patients with specific alterations (or pathway alter-
ations) to trial arms, in which the patient receives a specific drug or combination with puta-
tive utility against that alteration. Examples of large umbrella trials include iSpy2, Lung-MAP,
ALCHEMIST, MATRIX, and BATTLE-2. Basket trials include genomically profiled patients
with one of many permitted cancer types. Patients with a specific alteration are treated with a drug
or drugs targeting the alteration, and drug efficacy is assessed with respect to the specific alteration
and not with regard to the cancer type. This approach is particularly useful for determining the
efficacy of drugs targeting rarer alterations, for which cancer-specific trials are challenging owing
to low patient numbers. Examples of large basket trials with multiple arms include NCI-MATCH,
MyPathway, Basket of Baskets, and TAPUR. NCI-MATCH is the most ambitious, hosting >30
treatment arms and with matching primarily done on the basis of genomic selection (146). It is
important that all clinical trials report the maximal amount of information to the community
about the successes and failures in specific tumor types of specific drugs targeted to specific alter-
ations. In Supplemental Text 1, we focus on a basket trial of neratinib targeted against HER2
mutations to highlight the power of basket approaches and the importance of full outcome re-
porting (9). Cell-of-origin analyses have highlighted that certain cancers arising from different
organs may be more similar to each other than to other cancers from their originating tissue (6),
with important potential consequences for patient management and lending support to basket
trial approaches. However, the trial results discussed in Supplemental Text 1 (9) and the vemu-
rafenib basket trial described above (10) highlight tissue-specific caveats with regard to pan-cancer
actionability.
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Sustainable trial platforms with adaptive protocols and dynamic trial arms (accruing new arms
for novel alterations and matched drugs), as well as expansion cohorts to allow efficacy to be
demonstrated in subsets for which preliminary responses have been promising, can dramatically
speed up the drug discovery process. To identify rare alterations, it is necessary to genomically
profile large numbers of patients, with the knowledge that usually only a minority will be suc-
cessfully matched to a trial arm. This approach necessitates large national or international col-
laborations to find enough patients to provide statistical power to determine preliminary efficacy
for genomically matched drugs and unfortunately with the associated inequity that results from
these trials still being concentrated in large academic centers. Most large-scale trial approaches
have been concentrated in North America. The Basket of Baskets trial is an ambitious collabora-
tion between the seven comprehensive cancer centers that comprise Cancer Core Europe (147),
which has broken down many complex legal and regulatory barriers to achieve a sustainable trial
platform that will include many basket studies to match as many patients as possible to therapies.
These studies will open synchronously across all sites. The success of these approaches is reliant
upon the discovery of novel genomic biomarkers and matched drugs, but these trials can also be
adapted to incorporate biomarkers from other sources as well as compound biomarkers.

The FDA breakthrough therapy designation was launched to speed up the regulatory process
and improve access to therapies that have promising efficacy and safety data, and it recognizes
the difficulties inherent to performing large phase III trials for rare cancers and for rare genomic
alterations (148). It also appreciates the difficulties in performing superiority trials in which the
novel therapy is predicted to significantly outperform standard-of-care treatments (and matching
to a standard-of-care arm thereby presents significant ethical issues). This designation has resulted
in important alterations to trial designs, particularly through significant expansion of promising
phase II study cohorts.

OTHER FUTURE DIRECTIONS AND REQUIREMENTS

"To identify novel biomarkers from genomics-based approaches and translate these to clinical util-
ity, several concurrent approaches are required. We must interrogate the data that we already
have in novel ways, improve preclinical models to investigate and validate putatively actionable
biomarkers, interrogate data from multiple omics-based approaches, increase the recruitment to
biomarker-matched clinical trials, and incorporate complex and compound biomarkers into clin-
ical trial design. We must also alter our patient management to learn as much as possible from
every patient and expand and develop comprehensive databases with matched omics and clinical
data.

Comprehensive Analysis and Sharing of Patient-Level Data

As discussed above, large-scale approaches have furthered our knowledge of cancer genomics,
identified novel putatively actionable targets, provided important insights into cancer progression
and clonality, and highlighted similarities and differences between cancer types and subtypes. Col-
laborative approaches and pipelines between preclinical and clinical investigators across academia
and industry are now required to identify, prioritize, and validate the most promising targets from
these approaches, feeding findings directly into clinical trials. Such collaboration will require sig-
nificant investment from academia, government, and industry and coordinated international co-
operation (149).

Genomics is only one part of the cancer puzzle and can only make general predictions about
the phenotypic consequences of particular alterations, although network approaches have helped
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to refine these predictions. In a high-throughput manner, tumor cell transcriptomics provides
information that is closer to phenotype by highlighting likely protein levels and changes in sig-
naling pathways in cancer cells (150). Proteomics, though currently more expensive and more
difficult to interpret than nucleic acid profiling, is one step closer, allowing interrogation of actual
protein expression and posttranscriptional modifications (36). These approaches provide little in-
sight into the tumor microenvironment, and single-cell transcriptomics, imaging mass cytometry,
and immunological approaches must also be integrated alongside epigenomics, metabolomics, ra-
diomics, and microbiomics. Given the complexity of cancer, it is not surprising that such complex
approaches are required—traditional approaches have focused on the low-hanging fruit presented
by strong, directly targetable drivers, and only integrative approaches that identify emergent prop-
erties that are not easily discernable from the sum of the parts will likely deliver broad patient
benefit. Some of these benefits will be discernable from genomics data alone through artificial
intelligence (AI) approaches, which must now be applied to genomic data sets.

"To help deliver on this, data curation and sharing must be comprehensive and useful for both
the research community (for hypothesis generation and interrogation) and the clinical commu-
nity (to be able to act on identified alterations in individual patients). In Supplemental Text 3,
we highlight what information these databases should ideally include to optimize utility for both
communities, alongside practical, cost, and ethical considerations. We also discuss ongoing trans-
formative approaches to data sharing and their implications for clinical centers.

Completing the Bench-to-Bedside Loop to Improve and Personalize
Validation of Putatively Actionable Targets

Even without integrating other omics approaches, large-scale genomic data sets have highlighted
many more putatively actionable alterations than can ever feasibly be tested in clinical trials. To en-
sure that evidence of actionability before clinical testing is of the highest quality, we must improve
the throughput and translatability of preclinical models. As described above, high-throughput
systems for testing the consequences and druggability of large numbers of genomic alterations in
isogenic cell lines have been developed, but these systems currently consider consequences to cells
in only two dimensions, devoid of elements of the tumor microenvironment. This leads to con-
clusions that certain drugs are not useful, when they might be in vivo, and many positive results in
two dimensions are not borne out when tested in more complex models (151). High-throughput
in vitro screening in three dimensions goes some way to addressing these issues and can prioritize
hypotheses for xenograft experiments in murine models, in which stromal elements are co-opted
and humanization of murine immunity may also help improve translatability to cancer patients.
However, these approaches do not address the highly individual nature of patients’ cancers.

Figure 4 highlights some attractive ways to complete the bench-to-bedside loop at the level
of individual patients. Expansion of patient-derived CTCs allows individualized drug screening
in vitro (152), either prioritizing drugs against putatively actionable alterations or using an unbi-
ased approach. Drug panels should prioritize drugs for which safe, pharmacodynamically validated
doses have already been established in humans but should ideally also include other molecules to
generate and test new hypotheses. CT'Cs or biopsy specimens can also be grown into organoids,
which can recapitulate the genetic, histological, and molecular features of the tumor of origin, are
amenable to drug screening, and have been shown to predict clinical drug response (153, 154).
Hits can then be further validated through murine xenograft experiments, although it is unclear
if CTCs are truly representative of cells in tumors themselves and how precisely they represent
intratumoral/intertumoral heterogeneity. CTCs also do not allow examination of the context of
the patient’s tumor microenvironment.
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Figure 4

Novel approaches to determining and assessing actionability at the level of a single patient: completing the
bench-to-bedside loop. This illustration shows a possible iterative process whereby a patient’s derived
material is used for functional and bioinformatic analysis alongside that patient’s treatment journey. This
analysis informs the choices of drugs targeted against specific genomic alterations, taking into account
experimental sensitivities and resistances. Abbreviation: ctDNA, circulating tumor DNA.

Patient avatars are created by xenografting tumor-derived cells from a patient (including stro-
mal components) into murine models to allow in vivo testing of drugs in real-time alongside that
patient’s clinical journey (155, 156). Although expensive and space- and time-consuming (requir-
ing large animal colonies and with a lag period that limits their immediate clinical utility for pa-
tients who need to start treatment), avatars offer the possibility of treating tumor cells in a more
relevant context. Heterogeneity is maintained at least in early passages, including intratumoral
clonality, which is also maintained in short-term cultures of xenograft-derived tumor cells that
allow for high-throughput drug screening in vitro (157). However, human stromal components
are gradually replaced by murine stroma, and the contributions of immunity are necessarily lost
or diluted—although partially humanized immune systems can help (158), these do not precisely
model the patient’s unique immune system. In addition to providing important information about
sensitivity/resistance to specific drugs, these models can allow for the determination of likely re-
sistance mechanisms, and findings can be relayed to the treating clinician to inform treatment
choices. It is unclear how these approaches to patient management will be handled by regulatory
authorities, nor is it clear how treatment with off-label drugs in this setting might be approved.

Other Paths to Novel Therapies

The individual patient-centered approaches described above should proceed alongside more basic
science approaches for determining novel drug targets. For example, to build on the success of
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synthetic lethality, approaches using isogenic cell lines, knockout screens, or ISLE [identification
of clinically relevant synthetic lethality; this method predicts the most clinically useful synthetic
lethal interactions from laboratory screening results (159)] can help prioritize putative synthetic
lethal interactions and have successfully predicted response. Examination of pairs of genes that
are never comutated in the same tumor may also aid prioritization, and approaches to examine
the whole genome for synthetic lethal interactions are underway (160, 161).

Dysregulated transcriptional networks are being explored as potential therapeutic targets.
These impart important phenotypic differences to cancer cells and have led to the concept of
transcriptional addiction. For example, most human cancers amplify or deregulate the transcrip-
tion factor MYC, driving anabolic processes and metabolic adaptation. Although MYC is not
currently directly targetable in humans, inhibition of MYC function in murine models leads to
widespread tumoral cell death and is remarkably well tolerated (162). Promising approaches for
targeting transcriptional addiction include targeting the BET bromodomain coactivator fusions
that occur in many cancer types with BET inhibitors (163). Transcriptomics can also identify
clinically relevant immune signatures and help investigate resistance mechanisms, for example,
the highly recurrent signatures that converge on c-MET, YAP1, and LEF1 in treated melanoma
patients (164). Gene signatures, from microarray/RT-PCR approaches [e.g., Mammaprint® (21)
and Oncotype DX® (22)], have helped identify which early breast cancer patients are cured by
surgery and endocrine therapy alone and which require cytotoxic chemotherapy, reducing unnec-
essary treatment burdens and toxicities for thousands of women. Such approaches underline the
importance of refining biomarkers to produce clinically feasible, useful, and validated tools.

Proteomic analysis, as described above, is a powerful tool for determining true protein charac-
teristics and can identify novel clusters of drivers that are not necessarily discernable from tran-
scriptomics. Efforts to reduce the expense and improve the speed, sensitivity, and analytic validity
of proteomics will help unveil its true power. Epigenomics [using chromatin immunoprecipita-
tion sequencing (ChIP-seq) or methylation sequencing (methyl-seq)] has uncovered important
cancer-associated changes in genome-wide transcriptional and chromatin regulation (which is
often dysregulated through mutation of chromatin modulators), revealing possible novel treat-
ment approaches. Although broad-brush targeting of epigenetic modifications [e.g., with histone
deacetylase (HDAC) and DNA methyltransferase inhibitors] has yielded disappointing results,
insights into genome reorganization and synthetic lethal approaches have identified specific can-
didate targets. Epigenomics allows cellular phenotypes to be explored and potentially targeted,
and future predictive biomarkers may include epigenomically elucidated categories such as stem-
ness and epithelial-to-mesenchyme transitions, employing drugs to reverse these states [e.g., the
use of all-trans retinoic acid (ATRA) in neuroblastoma]. As described above, EZH2 has emerged
as a promising target (85), as has mutant IDH1/2 (which results in widespread epigenetic changes)
(165). Currently, epigenomic biomarkers are used to identify patients with hypermethylated MMR
genes [leading to MMR deficiency and opening up treatment possibilities with ICPIs (133)] or
methylated MGMT [leading to increased sensitivity to alkylating agents (e.g., temozolomide in
glioblastoma) (166)].

Nearly a century after the discovery of the Warburg effect (167), high-sensitivity mass
spectrometry-based metabolomics has emerged as an exciting prospect for highlighting differ-
ences in small molecules in cancer cells (and can be applied directly to tumor specimens) and
has highlighted therapeutic vulnerabilities given the particular reliance of cancer cells on certain
metabolic pathways (e.g., to make amino acids, fats, or the nucleic acids that are necessary for an-
abolic cell growth; reviewed in 168, 169). Integration of multi-omic analyses for 92 breast cancer
patients has highlighted some of these, such as fatty acid dependencies for luminal B cancers and
alterations in glucose/glutamine metabolism in HER2-positive and basal cancers (170). Common
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mutations in metabolic genes are driving alterations in certain cancers (e.g., IDH1/2, fumarate hy-
dratase, and succinate dehydrogenase), leading to attempts to target these using synthetic lethality
approaches (171).

Network and systems biology approaches are required to integrate multi-omic data (particu-
larly given the highly nonlinear interplay between cancer cells and their microenvironment) to
provide novel targets for therapy (172, 173). Although such approaches have not yet been applied
to the clinical trial setting (where reductionist methods continue to reign supreme), they have elu-
cidated mechanisms underlying observed network changes that are attractive targets for therapy
and are likely to be much more predictive of drug sensitivities than hypotheses based on single ge-
nomic alterations. Network approaches include identification of proteins that interact extensively
with altered cancer genes (aberration hubs), and these approaches can find novel targets, such as
the identification of spleen TK as a key proliferation factor in renal cell carcinoma (174). It is im-
portant that we incorporate machine learning and Al into our exploration of multi-omic data sets,
to find novel features that will predict drug sensitivities in ways that are currently unimaginable
and reveal broad pan-cancer targets.

Given promising durable clinical responses to ICPIs, much research is now focusing on re-
fining biomarkers of response to these drugs and finding novel ways to exploit anticancer im-
munity. Methods include neoantigen prediction and validation, T'CR sequencing, and the ex-
ploration of diverse intratumoral and systemic immune cell populations. A large-scale approach
akin to The Cancer Genome Atlas (TCGA) is required to systematically probe the immunome
for specific cancer types, including single-cell RNAseq of tumor-infiltrating cells. Beyond al-
lowing neoantigen creation, genomic alterations may also provide insights, at least in some
patients—for example, a small subset of patients harbor PDL1 gene amplifications (including
10.5% of patients with hepatocellular cholangiocarcinomas) (175, 176). Of nine patients (with
diverse cancers) harboring PDLI amplification that were treated with ICPIs, six had objective
responses, including a patient with glioblastoma, which is usually refractory to ICPIs. Genomic
alterations can also predict which patients are unlikely to benefit from ICPIs, such as melanoma
patients with 74K2 or 2-microglobulin deletions (177). Network approaches may help refine this
further.

To tackle heterogeneity, reliable identification and targeting of truncal (as opposed to sub-
clonal) genomic alterations should help tackle intrinsic subclonal resistance, and such approaches
can also help identify truncal neoantigens to inform immune-directed and cell-based therapeu-
tic approaches. Intermittent drug treatments may exploit changes in the relative fitness of sub-
clones that occur between drug-naive and treated states and help tackle some consequences of
heterogeneity.

The combinatorial drug space is challenging to investigate, although drug combinations will
usually be required to ensure extensive tumor cell killing and to prevent resistance mechanisms
from appearing (to allow durable responses). Combinations can include targets from different
pathways or several targets from the same pathway to counteract regulatory feedback mecha-
nisms. Aside from the methods described above, identification of synthetic rescues (178), in which
inhibition of one target is compensated for by activity of a rescuing protein or pathway, may help
inform combinatorial approaches.

Radiogenomics and Radiotherapy

Radiogenomics incorporates radiomic data (in which digitalized images are mined for certain fea-
tures and matched to clinical data) and genomic data and is a promising approach to determine
differences between primary tumors and individual metastatic sites (and provide early readouts
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of treatment response), particularly when combined with novel imaging approaches (e.g., the use
of pathway-specific imaging probes). This review has focused on druggability with regard to sys-
temic treatments, yet RT is a key modality in the management of >40% of cancer patients cured
of their disease and is highly effective in symptom control (179). Given that RT works by inducing
direct or indirect DNA damage (and potentially immunogenic cell death leading to investigation
of ICPI-RT combination approaches), its use must be reconsidered in light of genomic data to
improve outcomes. Cancer cells are more likely to have DDR deficiencies (119), leading to the
development of approaches utilizing RT to increase DNA damage to unassailable levels in these
cells (e.g., in ATM-deficient cancers). A multimodality approach through combined use of DDR
inhibitors (e.g., ATM/ATR/PARP inhibitors) and targeted RT may increase radiosensitivity. For
example, the brain-penetrant ATM inhibitor AZD1390 shows promising radiosensitizing effects
in TP53 mutant glioma models (180) and is in early phase clinical development alongside RT
(NCT03423628). Efforts have been made to develop predictors of radiosensitivity—for example,
the pan-cancer radiosensitivity index, which is based on gene expression data for 10 genes in 48 cell
lines and has been validated in multiple cancers (although predominantly retrospectively) (181).
Further, a novel gene-expression radiosensitivity signature has been developed for breast cancer,
and in an independent data set, this signature outperformed all traditional clinicopathological fea-
tures for predicting local recurrence (182). Numerous other signatures have also been developed
across numerous cancer subtypes. However, definitive and internationally recognized approaches
for predicting radiosensitivity have not been agreed upon (reviewed in 183). Notably, only one
radiosensitizing drug—RT combination has been approved in the last 12 years [cetuximab—RT in
head and neck cancer (184)], and whether it is truly radiosensitizing remains unclear. To improve
on this, integrated data sharing as described above is required to allow investigation of radiosen-
sitivity and radioresistance signatures at an appropriate scale.

CONCLUSIONS

Genomic sequencing of human tumors has led to a dramatic improvement in our understand-
ing of cancer, yet many challenges remain in converting these important data into approaches for
developing effective anticancer therapies. To improve translatability of genomic findings, large-
scale international efforts are required to identify and validate drug-specific vulnerabilities that
can be prioritized for clinical testing in well-designed umbrella and basket clinical trials. These
approaches will require close collaboration between basic scientists, bioinformaticians, clinical
scientists, clinicians, industry, and funding bodies. Future approaches must effectively integrate
clinical data with multi-omic data sets, using systems biology and Al methods to identify novel
cancer vulnerabilities. These approaches require significant investment in data collection, cura-
tion, and sharing. In the meantime, many genomic tools are available for clinical use to match
patients to approved therapies, or to fuel recruitment to genomically matched clinical trials, and
although the success to date of genomically driven drug development has been disappointing, the
clinical benefit afforded by approved agents underlines persistence with this approach. The cart
(genomic data) has overtaken the horse (clinical actionability), leading to frequent clinical dilem-
mas whereby genomic alterations with putative therapeutic actionability lead to imprudent use of
off-label drugs. We urge clinicians to approach patient-specific management decisions with cau-
tion and with detailed interrogation of evidence that supports or refutes use of a specific drug
against a specific alteration. We urge researchers to get the horse back before the cart by diligent
characterization and prioritization of putatively actionable alterations—and diligent assessment of
the extra information that genomics (versus targeted genetic sequencing) provides—to produce
novel genomics-based predictive biomarkers.
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